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What is homology?

Homology is a rigorous mathematical method for
defining and categorizing holes in a shape

Homological algebra: Linear algebra over rings
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Homology of the torus

H0(T) = R
H1(T) = R ⊕ R
H2(T) = R
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Definition

· · · −→ Ci+1
di+1−−→ Ci

di−−→ Ci−1 −→ · · ·

Hi = Ker(di)/Im(di+1)

Ci is the i-dimensional “content”,

di maps the i-dimensional “content” on its boundary,

Hi is the i th-homology group.
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The triangle

a b

c

ab

ac bc

0
0−→
d2

Z[ab, ac , bc]

(−1 1 0
−1 0 1
0 −1 1

)
−−−−−−−→

d1
Z[a, b, c]

0−→
d0

0

H0 = Ker(d0)/Im(d1) = Z[a, b, c]/Im(d1) ' Z
H1 = Ker(d1)/Im(d2) ' Ker(d1) ' Z
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Z-homology vs. F2-homology

For the Torus it does not matter if computations are
done in Z or F2:

Z F2

H0(T) Z F2

H1(T) Z⊕ Z F2 ⊕ F2

H2(T) Z F2

This is not always true, e.g. Klein bottle.
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Klein bottle

Homology groups:

Z F2

H0(K) Z F2

H1(K) Z⊕ Z2 F2 ⊕ F2

H2(K) 0 F2
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Z-homology vs. F2-homology

With F2-homology T and K are indistinguishable!

Z-homology is more informative.

Goal: Compute R-homology with Coq.
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Definition

· · · −→ Ci+1
di+1−−→ Ci

di−−→ Ci−1 −→ · · ·

Hi = Ker(di)/Im(di+1)

Required features:

finitely presented modules: Ci ,

morphisms of f.p. modules: di ,

kernel and image submodules,

quotient of a submodule by another.
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Finitely presented modules

We take an approach close to SSReflect
matrix/mxalgebra/vector libraries.

A finitely presented modules is characterized by:

its generators (e.g. e0, e1),

and relations between them (e.g. 2e0 = 0).

We represent:

generators by a number n (e.g. 2),

relations by a matrix with n columns (e.g. ( 2 0 )).
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Module presentation

Rm0 Rm M 0
M 1 0

A is zero in the moduleM
⇔ ∃B , BM = A

⇔ M | A
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Morphisms

Morphisms must preserve relations:

Rm0 Rm M 0
M 1 0

Rn0 Rn N 0
N 1 0

X Y ϕ�

∃X , MY = XN

⇔ N | MY
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Morphisms

Morphisms must preserve relations:

Rm0 Rm M 0
M 1 0

Rn0 Rn N 0
N 1 0

X Y ϕ�

Record morphism_of m0 m n0 n (M : ’M[R]_(m0, m)) (N : ’M[R]_(n0, n)) :=

Morphism { matrix_of_morphism : ’M[R]_(m, n);

_ : (N %| M *m matrix_of_morphism)%MP }.
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Submodules

Submodules are just injective morphisms:

Rm0 Rm M 0
M 1 0

Rn0 Rn N 0
N 1 0

X Y ι�
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Submodules

Submodules are just injective morphisms:

Rm0 Rm M 0
M 1 0

Rn0 Rn N 0
N 1 0

X Y ι�

But we define them just as matrices:
Record submodule_of n0 n (N : ’M[R]_(n0, n)) :=

Submodule {dim_of_submodule : nat;

matrix_of_submodule : ’M[R]_(dim_of_submodule, n)}.

because we can find a M which turns it into an injective
morphism. (But what is injectivity ?)
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Injectivity, surjectivity

Rm0 Rm M 0
M 1 0

Rn0 Rn N 0
N 1 0

X Y ϕ�

ϕ :M→N is

injective
if the kernel of L modulo N is zero modulo M
surjective if its cokernel is trivial (its image is full).
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Kernel is a primitive

Ker is a primitive giving the space of solutions
(e.g. obtained from Smith Normal Form).

XN = 0⇔ ∃Z ,Z · Ker(N) = X

⇔ Ker(N) | X

But finding the space of solutions of

XN = 0 inM

requires a “kernel modulo”.
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Kernel modulo

XN = 0 inM⇔ ∃Y , ( Y X ) · ( M
N ) = 0

⇔ ∃Y Z , Z · Ker ( M
N ) = ( Y X )

⇔ ∃Y Z , Z · ( K0 K1 ) = ( Y X )

⇔ ∃Y Z , ( Z ·K0 Z ·K1 ) = ( Y X )

⇔ ∃Z , Z · K1 = X

⇔ K1 | X

where ( K0 K1 ) = Ker ( M
N ).

kerM(N) := K1 is the kernel of N modulo M .
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Fundamental property for kernel modulo

M | XN ⇔ kerM(N) | X

From kernel modulo, we have:

the presentation matrix (pres) of a submodule of N
⇒ promotion of a submodule to a module M,

⇒ this inclusion M→N is injective,

the kernel of a morphism as a submodule
(the image is trivial).
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Kernel of a morphism

Rm0 Rm M 0
M 1 0

Rn0 Rn N 0
N 1 0

X Y ϕ�

Rk0 Rk K 0
kerM(kerN(Y )) 1 0

kerN(Y ) kerm(ϕ)�

Definition kerm := Submodule M (N.-ker (matrix_of_morphism phi)).
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Quotienting

Rm0 Rm M 0
M 1 0

Rn0 Rn N 0
N 1 0

X Y ϕ�

Rq0 Rq Q 0
( N
Y ) 1 0

( 1 0 ) 1 cokernel(ϕ)�

(** Quotienting is just matrix stacking *)

Definition quot_by (L : Sub N) := col_mx N (incl L).
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Sharpening and quotienting

If ϕ : M → N and Image(ϕ) ⊂ L we factor

ϕ = sharpenL(ϕ) · incl(L)

If L ⊂ N are submodules of M, we factor

incl(L) = inclN(L) · incl(N)

Notation "N %/ L" := (quot_by (image (N.-incl L))).
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Definition of an homology module

Variables m0 m1 n0 n1 p0 p1 : nat.

Variables (M : ’M[R]_(m0,m1)) (N : ’M[R]_(n0,n1)) (P : ’M[R]_(p0,p1)).

Variables (phi : ’Mor(M, N)) (psi : ’Mor(N, P)).

Lemma mulm_eq0 : (P %| phi *m psi) = (image phi <= ker psi).

Proof.

rewrite /submodule imageK -dvd_ker ker_modE.

apply/idP/idP=> [ ? | /(dvdmx_trans _)-> //].

by rewrite (dvdmx_trans (dvd_quot_mx_incl _)).

by rewrite dvd_mx_col dvdmx_refl andbT dvd_ker dvdmx_morphism.

Qed.

Hypothesis mul_phi_psi : P %| phi *m psi.

Lemma imphi_kerpsi : image phi <= ker psi.

Proof. by rewrite -mulm_eq0. Qed.

Definition homology := ker psi %/ image phi.
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Related work

Inspired by [BR08] and [Gon11]:

MOHAMED BARAKAT and DANIEL ROBERTZ,
homalg – a meta-package for homological algebra,
Journal of Algebra and Its Applications 07 (2008),
no. 03, 299–317.

Georges Gonthier, Point-free, set-free concrete linear
algebra, ITP, 2011, pp. 103–118.

(and thanks to wikipedia.org for the torus and Klein
bottle pictures)
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Future work and conclusions

Future work:

More functors: Hom, cohomology, Ext, Tor...
Quotienting by equality modulo in a module.
Quotienting by module isomorphism (requires
S.N.F. or univalence).
Free resolutions.
Abelian categories.

Conclusions:

Finitely presented modules provides a nice setting
for formalizing constructive module theory.
Everything is a matrix ⇒ CoqEAL ready.
Everything is based on system solving.
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Thank you!
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