
Refinements for free!

Refinements for free!1

Cyril Cohen, Maxime Dénès and Anders Mörtberg

University of Gothenburg and Inria Sophia-Antipolis

December 12, 2013

1This work has been funded by the FORMATH project, nr. 243847, of the FET program
within the 7th Framework program of the European Commission.
Cyril Cohen, Maxime Dénès and Anders Mörtberg 1

Refinements for free! | Introduction

Motivation: verifying computer algebra algorithms

What for?
Computer algebra algorithms can help automate proofs
Formal proofs bridge the gap between paper correctness proofs and
real-life implementations
Proof assistants can provide independent verification of results
obtained by computer algebra programs (e.g. ζ(3) is irrational,
computation of homology groups)

Cyril Cohen, Maxime Dénès and Anders Mörtberg 2

Refinements for free! | Introduction

Context

Traditional approaches to program verification:
Bottom-up verification (e.g. annotations)
Program synthesis from specifications (e.g. Coq’s extractor)
Top-down step-wise refinements from specification to programs

Specificity of computer algebra programs:
Computer algebra algorithms can have complex specifications
E�iciency matters!

Problem: these aspects are o�en in tension

Cyril Cohen, Maxime Dénès and Anders Mörtberg 3

Refinements for free! | Introduction

Separation of concerns

We know that a program must be correct and we can study it from
that viewpoint only; we also know that it should be e�icient and we
can study its e�iciency on another day, so to speak. [. . .] But noth-
ing is gained – on the contrary! – by tackling these various aspects
simultaneously. It is what I sometimes have called "the separation
of concerns"

Dijkstra, Edsger W.
"On the role of scientific thought" (1982)

Cyril Cohen, Maxime Dénès and Anders Mörtberg 4

Refinements for free! | Introduction

Program and data refinements
We distinguish two kinds of refinements:

Program refinement: improving the algorithmics
Data refinement: switching to more e�icient data representation

Specification

Refined algorithm

Concrete implementation

Program refinement

Data refinement

Cyril Cohen, Maxime Dénès and Anders Mörtberg 5

Refinements for free! | Previous framework

Traditional abstraction

Given a datatypeD depending on typesB
and operators t usingD and using operators b onB.

1 Abstract the datatypeD overB =⇒ DX
2 Abstract operators t overB and b =⇒ tXx
3 Abstract theorems overB and b and over theorems about b

Program refinement by having two extensionally equal t0 and t1.
Data instantiation, but how to change a datatype for another?

Cyril Cohen, Maxime Dénès and Anders Mörtberg 6

Refinements for free! | Previous framework

Example: natural numbers in COQ standard lib

In the standard library of Coq: nat (unary) and N (binary) along with two
isomorphisms N.of_nat : nat -> N and N.to_nat : N -> nat

Here already two aspects in tension:
nat has a convenient induction scheme for proofs
N gives an exponentially more compact representation of numbers

In the standard library, proofs are factored using an abstract axiomatization
(module signature) and can be instanciated to these two implementations.

Cyril Cohen, Maxime Dénès and Anders Mörtberg 7

Refinements for free! | Previous framework

Using traditional abstraction?

Ways to achieve it:
modules (e.g. COQ stdlib), but they are very rigid,
typeclasses (currently slow),
canonical structures (currently not adapted to too many classes).

Issues and questions:
how to change data representation? (fromDB toDC)
goes against the "small scale reflection" approach
(following SSREFLECT)

Cyril Cohen, Maxime Dénès and Anders Mörtberg 8

Refinements for free! | Previous framework

Using traditional abstraction?

Ways to achieve it:
modules (e.g. COQ stdlib), but they are very rigid,
typeclasses (currently slow),
canonical structures (currently not adapted to too many classes).

Issues and questions:
how to change data representation? (fromDB toDC)
goes against the "small scale reflection" approach
(following SSREFLECT)

Cyril Cohen, Maxime Dénès and Anders Mörtberg 8

Refinements for free! | Previous framework

Context: Libraries, Conventions, Examples

Proof-oriented types: A, T(A)
E.g.: nat, int, rat, {poly R},
(matrix R). . .

Computation-oriented types:
B, D(B)
E.g.: N, Z, Q, sparse_poly, . . .

Proof-oriented programs:
a, t(a)
E.g.: O, S, addn, addz, . . . , 0%R,
1%R, (_+_)%R. . .

Computation-oriented
programs: b, d(b)
E.g.: xH, xI, xO, addN, addQ,
. . . , 0%C, 1%C, (_+_)%C. . .

Rich theory, geared towards
interactive proving

Reduced theory, more
e�icient data-structures and
more e�icient algorithms

We suggest a methodology based on refinement from T(A) toD(B) to
achieve separation of concerns.

Cyril Cohen, Maxime Dénès and Anders Mörtberg 9

Refinements for free! | Previous framework

Context: Libraries, Conventions, Examples

Proof-oriented types: A, T(A)
E.g.: nat, int, rat, {poly R},
(matrix R). . .

Computation-oriented types:
B, D(B)
E.g.: N, Z, Q, sparse_poly, . . .

Proof-oriented programs:
a, t(a)
E.g.: O, S, addn, addz, . . . , 0%R,
1%R, (_+_)%R. . .

Computation-oriented
programs: b, d(b)
E.g.: xH, xI, xO, addN, addQ,
. . . , 0%C, 1%C, (_+_)%C. . .

Rich theory, geared towards
interactive proving

Reduced theory, more
e�icient data-structures and
more e�icient algorithms

We suggest a methodology based on refinement from T(A) toD(B) to
achieve separation of concerns.

Cyril Cohen, Maxime Dénès and Anders Mörtberg 9

Refinements for free! | Previous framework

Direct style (bad)

A B
ψ isos

TA DB
ϕ iso

t d
ϕ ◦ t ≈ d ◦ϕ

Theory on t

No separation of concerns!

Cyril Cohen, Maxime Dénès and Anders Mörtberg 10

Refinements for free! | Previous framework

ITP 2012 (Dénès, Mörtberg, Siles)

Assuming we have a theory about t on a type TA:

1 write e�icient algorithms t ′ for TA,
2 prove that TA andDB are isomorphic,
3 duplicate the algorithms d forDB,
4 prove extensional equality of algorithms.

Cyril Cohen, Maxime Dénès and Anders Mörtberg 11

Refinements for free! | Previous framework

ITP 2012 (Dénès, Mörtberg, Siles)

A B
ψ isos

TA DB
ϕ iso

t t ′ d
t ≈ t ′ ϕ ◦ t ′ ≈ d ◦ϕ

Theory on t

Prog refinement Data refinement

Issues:
t ′ and d are duplicates,
data refinements contain nomathematics,
but long and time consuming to write down by hand,
what ifA and B are not isomorphic?

Cyril Cohen, Maxime Dénès and Anders Mörtberg 12

Refinements for free! | Previous framework

ITP 2012 (Dénès, Mörtberg, Siles)

A B
ψ isos

TA DB
ϕ iso

t t ′ d
t ≈ t ′ ϕ ◦ t ′ ≈ d ◦ϕ

Theory on t

Prog refinement Data refinement

Issues:
t ′ and d are duplicates,
data refinements contain nomathematics,
but long and time consuming to write down by hand,
what ifA and B are not isomorphic?

Cyril Cohen, Maxime Dénès and Anders Mörtberg 12

Refinements for free! | Previous framework

Non isomorphic types

Record rat : Set := Rat {
valq : (int * int) ;
_ : (0 < valq.2) && coprime ‘|valq.1| ‘|valq.2|

}.

The proof-oriented rat enforces that fractions are reduced
Allows to use Leibniz equality in proofs
This invariant is costly to maintain during computations

We would like to relax the constraint and express that rat is isomorphic to
a quotient of a subset of pairs of integers.

Cyril Cohen, Maxime Dénès and Anders Mörtberg 13

Refinements for free! | A generic approach to refinements

The new strategy

Assuming we have a theory on a type A:

1 write e�icient algorithms in a generic form dXx,
2 prove dAa correct with regard to tAa
3 get correctness for dXx by parametricity.

Cyril Cohen, Maxime Dénès and Anders Mörtberg 14

Refinements for free! | A generic approach to refinements

Overview

TA DA DX

A X

GTA GDA GDX

RA

RTRA [D]RA

[G]RTRA [G][D]RAtAa dAa

FA FX
[F]RAa x

dAa dXx

RGRA

RDRA = RTRA ◦ [D]RA

tAa dXx

Cyril Cohen, Maxime Dénès and Anders Mörtberg 15

Refinements for free! | A generic approach to refinements

Generic programming: addition over rationals

Generic datatype (DX)

Definition Q Z := (Z * Z).

Generic operations (dXx of typeGDX)

Definition addQ Z ‘{add Z} ‘{mul Z} : add (Q Z) :=
fun x y => (x.1 * y.2 + y.1 * x.2, x.2 * y.2).

To prove correctness of addQ, abstracted operators (x) (+ : add Z) and
(* : mul Z) are instanciated by proof-oriented definitions (a) .
When computing, these operators are instanciated to more e�icient ones.

Cyril Cohen, Maxime Dénès and Anders Mörtberg 16

Refinements for free! | A generic approach to refinements

Proof-oriented correctness

The type int is the proof-oriented version of integers (A).
The type rat is the proof-oriented version of rationals (T).

Correctness of addQ int

Definition addQ Z ‘{add Z} ‘{mul Z} : add (Q Z) :=
fun x y => (x.1 * y.2 + y.1 * x.2, x.2 * y.2).

Definition Rrat : rat -> Q int -> Prop :=
fun r q => Qint_to_rat q = r.

Lemma Rrat_add :
forall (x : rat) (u : Q int), Rrat x u ->
forall (y : rat) (v : Q int), Rrat y v ->
Rrat (add_rat x y) (addQ u v).

Cyril Cohen, Maxime Dénès and Anders Mörtberg 17

Refinements for free! | A generic approach to refinements

Overview

TA DA DX

A X

GTA GDA GDX

RA

RTRA [D]RA

[G]RTRA [G][D]RAtAa dAa

FA FX
[F]RAa x

dAa dXx

RGRA

RDRA = RTRA ◦ [D]RA

tAa dXx

Cyril Cohen, Maxime Dénès and Anders Mörtberg 18

Refinements for free! | A generic approach to refinements

Parametricity

Parametricity for closed terms in
There is a translation operator : [.], such that for a closed type T and a
closed term x : T , we get [x] : [T]xx.

(Reynolds, Wadler, Keller and Lasson)

Automatic deduction of

dAa [G][D]RA dXx

from
a [F]RA x

Currently using a logic program for COQ typeclass mechanism
It is possible because [d] : [forallYX, GYX]dd
Cyril Cohen, Maxime Dénès and Anders Mörtberg 19

Refinements for free! | A generic approach to refinements

Overview

TA DA DX

A X

GTA GDA GDX

RA

RTRA [D]RA

[G]RTRA [G][D]RAtAa dAa

FA FX
[F]RAa x

dAa dXx

RGRA

RDRA = RTRA ◦ [D]RA

tAa dXx

Cyril Cohen, Maxime Dénès and Anders Mörtberg 20

Refinements for free! | A generic approach to refinements

Automation

Correctness of addQ

Definition addQ Z ‘{add Z} ‘{mul Z} : add (Q Z) :=
fun x y => (x.1 * y.2 + y.1 * x.2, x.2 * y.2).

Variables (Z : Type) (Rint : int -> Z -> Prop).
Definition RQ := (RQint \o (Rint * Rint))%rel.

Lemma RQ_add ‘{add Z, mul Z} : [...] ->
forall (x : rat) (u : Q Z), RQ x u ->
forall (y : rat) (v : Q Z), RQ y v ->
RQ (add_rat x y) (addQ u v).

RQint_add is not for free,
but param_addQ should be!

Cyril Cohen, Maxime Dénès and Anders Mörtberg 21

Refinements for free! | A generic approach to refinements

Automation

Correctness of addQ

Definition addQ Z ‘{add Z} ‘{mul Z} : add (Q Z) :=
fun x y => (x.1 * y.2 + y.1 * x.2, x.2 * y.2).

Variables (Z : Type) (Rint : int -> Z -> Prop).
Definition RQ := (RQint \o (Rint * Rint))%rel.

Lemma RQ_add ‘{add Z, mul Z} : [...] ->
(RQ ==> RQ ==> RQ) add_rat (addQ (+) (*))

RQint_add is not for free,
but param_addQ should be!

Cyril Cohen, Maxime Dénès and Anders Mörtberg 21

Refinements for free! | A generic approach to refinements

Automation

Correctness of addQ

Definition addQ Z ‘{add Z} ‘{mul Z} : add (Q Z) :=
fun x y => (x.1 * y.2 + y.1 * x.2, x.2 * y.2).

Variables (Z : Type) (Rint : int -> Z -> Prop).
Definition RQ := (RQint \o (Rint * Rint))%rel.

Lemma RQ_add ‘{add Z, mul Z} :
(Rint ==> Rint ==> Rint) addz (+) ->
(Rint ==> Rint ==> Rint) mulz (*) ->
(RQ ==> RQ ==> RQ) add_rat (addQ (+) (*))

RQint_add is not for free,
but param_addQ should be!

Cyril Cohen, Maxime Dénès and Anders Mörtberg 21

Refinements for free! | A generic approach to refinements

Automation

Correctness of addQ

Variables (Z : Type) (Rint : int -> Z -> Prop).
Definition RQ := (RQint \o (Rint * Rint))%rel.

Lemma RQint_add :
(RQint ==> RQint ==> RQint) add_rat (addQ addz mulz)

Lemma param_addQ ‘{add Z, mul Z} :
(Rint ==> Rint ==> Rint) addz (+) ->
(Rint ==> Rint ==> Rint) mulz (*) ->
(Rint * Rint ==> Rint * Rint ==> Rint * Rint)
(addQ addz mulz) (addQ (+) (*))

RQint_add is not for free,
but param_addQ should be!

Cyril Cohen, Maxime Dénès and Anders Mörtberg 21

Refinements for free! | A generic approach to refinements

Automation

Correctness of addQ

Variables (Z : Type) (Rint : int -> Z -> Prop).
Definition RQ := (RQint \o (Rint * Rint))%rel.

Lemma RQint_add :
(RQint ==> RQint ==> RQint) add_rat (addQ addz mulz)

Lemma param_addQ ‘{add Z, mul Z} :
(Rint ==> Rint ==> Rint) addz (+) ->
(Rint ==> Rint ==> Rint) mulz (*) ->
(Rint * Rint ==> Rint * Rint ==> Rint * Rint)
(addQ addz mulz) (addQ (+) (*))

RQint_add is not for free,

but param_addQ should be!

Cyril Cohen, Maxime Dénès and Anders Mörtberg 21

Refinements for free! | A generic approach to refinements

Automation

Correctness of addQ

Variables (Z : Type) (Rint : int -> Z -> Prop).
Definition RQ := (RQint \o (Rint * Rint))%rel.

Lemma RQint_add :
(RQint ==> RQint ==> RQint) add_rat (addQ addz mulz)

Lemma param_addQ ‘{add Z, mul Z} :
(Rint ==> Rint ==> Rint) addz (+) ->
(Rint ==> Rint ==> Rint) mulz (*) ->
(Rint * Rint ==> Rint * Rint ==> Rint * Rint)
(addQ addz mulz) (addQ (+) (*))

RQint_add is not for free,
but param_addQ should be!

Cyril Cohen, Maxime Dénès and Anders Mörtberg 21

Refinements for free! | A generic approach to refinements

Using the framework

For many types (nat, int, rat, matrix, . . .), there is a specification
function:

spec : DX → TA

which is a refinement of the identity function.

The corresponding relation has type:

Rspec : ∀Xx,RAax → ∀(u : TA)(v : DX), RDuv→ idu = specv

C[u] → C[specv]

using rewrite Rspec.

Cyril Cohen, Maxime Dénès and Anders Mörtberg 22

Refinements for free! | Conclusion

Related work

(A refinement-based approach to computational algebra in Coq
(Dénès Mörtberg Siles, ITP’12))
A New Look at Generalized Rewriting in Type Theory (Sozeau, JFR’09)
Automatic data refinements in ISABELLE/HOL (Lammich, ITP’13)
Univalence: Isomorphism is equality (Coquand Danielsson, ’13)
Parametricity in an Impredicative Sort (Keller Lasson, CSL’12)

Cyril Cohen, Maxime Dénès and Anders Mörtberg 23

Refinements for free! | Conclusion

Applications and future work

We applied it to algorithms we had previously verified: Karatsuba’s
polynomial multiplication, Strassen’s matrix product,
we are still porting others from the old framework: Sasaki-Murao
algorithm, Smith normal form.

Future work:
have a better way to get parametricity than typeclasses,
try on algorithms outside algebra,
scale up to dependent types,
try to extract the e�icient implementation.

Cyril Cohen, Maxime Dénès and Anders Mörtberg 24

Refinements for free! | Conclusion

Thanks!

Cyril Cohen, Maxime Dénès and Anders Mörtberg 25

	Introduction
	Previous framework
	A generic approach to refinements
	Conclusion

